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ABSTRACT

The recently launchedGeostationaryOperational Environmental Satellite ‘‘R-series’’ (GOES-R) satellites

carry the Geostationary Lightning Mapper (GLM) that measures from space the total lightning rate in

convective storms at high spatial and temporal frequencies. This study assimilates, for the first time, real GLM

total lightning data in an ensemble Kalman filter (EnKF) framework. The lightning flash extent density

(FED) products at 10-km pixel resolution are assimilated. The capabilities to assimilate GLM FED data are

first implemented into the GSI-based EnKF data assimilation (DA) system and tested with a mesoscale

convective system (MCS). FED observation operators based on graupel mass or graupel volume are used.

The operators are first tuned through sensitivity experiments to determine an optimal multiplying factor to

the operator, before being used in FED DA experiments FEDM and FEDV that use the graupel-mass or

graupel-volume-based operator, respectively. Their results are compared to a control experiment (CTRL)

that does not assimilate any FED data. Overall, both DA experiments outperform CTRL in terms of the

analyses and short-term forecasts of FED and composite/3D reflectivity. The assimilation of FED is primarily

effective in regions of deep moist convection, which helps improve short-term forecasts of convective threats,

including heavy precipitation and lightning. Direct adjustments to graupel mass via observation operator as

well as adjustments to other model state variables through flow-dependent ensemble cross covariance within

EnKF are shown to work together to generate model-consistent analyses and overall improved forecasts.

1. Introduction

Hazards associated with severe weather such as flash

floods, hail, lightning, and tornadoes pose significant

threats to life and property. Based on a survey from the

U.S. National Weather Service (NWS), lightning and

tornadoes alone are responsible, on average, for 45 and

60 fatalities annually within the United States; better

forecasting and warning of such hazardous weather

should help reduce the number of facilities. Improving

severe weather prediction thus remains a critical com-

ponent of the NWS mission. Owing to the notable ad-

vancement in numerical weather prediction (NWP)

models, computational resources, as well as developmentCorresponding author: Ming Xue, mxue@ou.edu
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of advanced data assimilation (DA) systems, the skill and

usefulness of severe weather forecasts have improved

significantly in recent years.

Modern DA techniques, in particular, provide the

best estimate of the physical states within NWP models

by optimally combing model forecasts and observations.

A number of DA methods have been developed over

the past few decades to improve the initial conditions

of NWP, including the three-dimensional variational

(3DVar), four-dimensional variational (4DVar), en-

semble Kalman filter (EnKF), and ensemble variational

hybrid DA methods. For the prediction of convective

storms and associated hazards, grid spacings small

enough to resolve the storms are needed (Lilly 1990;

Clark et al. 2010; Sun et al. 2014). To initialize

convective-scale models, observations at comparative

resolutions are required, and many studies have shown

that weather radar observations can effectively im-

prove short-term forecasts of convective weather (e.g.,

Gao et al. 2004; Tong and Xue 2005; Xue et al. 2006;

Jung et al. 2008; Aksoy et al. 2009, 2010; Kain et al. 2010;

Dowell et al. 2011; Gao et al. 2013; Wang et al. 2013; Liu

and Xue 2016; Kong et al. 2018; Liu et al. 2019).

Akin to radar observations, lightning data are a source

of high-resolution observations that is able to indicate

the presence of deep, moist, mixed-phased convection.

The availability of operational total lightning data

[i.e., cloud-to-ground (CG) plus intracloud (IC) flashes]

can potentially provide valuable information to NWP

models at the convective scale. This is because total

lightning flash rates were shown to correlate well with

bulk measures of convective strength such as 101m s21

updraft and graupel mass or volume in continental

storms (Goodman et al. 1988; MacGorman et al. 1989;

Carey and Rutledge 1998; MacGorman et al. 2005;

Wiens et al. 2005; Fierro et al. 2006; Kuhlman et al. 2006;

Deierling and Petersen 2008; MacGorman et al. 2011)

and in hurricanes (Fierro et al. 2015b; Fierro and

Mansell 2018). Thus, leveraging the total lightning

measurements to inform NWP models about the evo-

lution and intensification of the deep moist convection

is expected to help augment our ability to forecast

convective threats (Papadopoulos et al. 2005; Fierro

et al. 2012).

TheGeostationaryLightningMapper (GLM;Goodman

et al. 2013) provides total lightning data products at high

spatial and temporal resolutions over the continental

United States (CONUS). In November 2017, GOES-R

(operationally renamed as GOES-16) was repositioned

from its checkout location to its final, operational location

centered over 758W over the Western Hemisphere,

allowing the GLM to deliver observation measure-

ments between 528N and 528S latitude. The GLM

provides real-time, high-frequencymonitoring of lightning-

active convection overCONUSandneighboring, vast data-

sparse regions. Thus, GLM observations will be able to

complement ground-baseddata in data-sparse areas such as

oceans and mountainous regions.

Past works focusing on lightningDA (LDA)made use

of lightning data detected from various ground-based

platforms such as the very-high-frequency (VHF)

Lightning Mapping Arrays (LMA, Rison et al. 1999;

Thomas et al. 2004; Rust et al. 2005; Mansell et al.

2007; Allen et al. 2016), the very-low-frequency (VLF)

World Wide Lightning Location Network (WWLLN;

Dixon et al. 2016), the broadband Earth Network Total

Lightning Network (Fierro et al. 2012, 2015b), the VLF

U.S. National Lightning Detection Network (Nag and

Rakov 2014), and the VLF Pacific Lightning Detection

Network/Long-Range Lightning Detection Network

(PacNet/LLDN; Pessi and Businger 2009). Anticipating

the launch of GOES-R satellites carrying the GLM,

some of the above-cited preliminary LDA studies used

ground-based lightning data to create pseudoGLM data

and assimilated the data primarily through nudging or

direct insertion methods (Fierro et al. 2012, 2014; Dixon

et al. 2016). These LDA techniques employed empirical,

functional relationships between a proxy variable

known to be well associated with lightning–such as

relative humidity or rainfall rates–and lightning den-

sity fields. Recently, Fierro et al. (2016) applied and

extended such moistening technique to a variational

framework by assimilating pseudo-qy (water vapor

mixing ratio) retrieved from the LMA flash extent

density (FED) data with similar short-term forecast

(#3h) improvements. Additionally, Fierro et al. (2016)

assimilated lightning information in tandem with

level-II radar data and found that the best forecast im-

provements were generally seen when both radar and

lightning data were assimilated. Generally speaking, the

above works have shown the potential benefit of the

LDA in terms of achieving forecast improvements that

were to certain extent comparable to that of radar DA.

With the availability of real GOES-R GLM data over

the past 2 years, limited studies have been carried out

assimilating such real data and examining their impacts

on convective storm predictions. In Fierro et al. (2019)

and Hu et al. (2020), the indirect approach that assimi-

lates via 3DVar pseudo-moisture derived from GLM

lightning data (Fierro et al. 2016) was applied to real

GLM data, and positive impacts were found on short-

term storm forecasting. Generally wet bias was also

found in the forecasts, however.

Compared to nudging, direct insertion, or 3DVar

methods, EnKF has clear advantages. With EnKF,

background error covariances are estimated from an
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ensemble of forecasts and are used to adjust model state

variables that are directly or indirectly related to the

observations (Evensen 1994; Tong and Xue 2005). Thus

far, only two studies have attempted to assimilate

lightning data in the EnKF framework: namely, the

OSSE study of Mansell (2014) and that of Allen et al.

(2016); the former assimilated simulated FED data

while the latter assimilated pseudo-GLM observations

derived from ground-based LMA. In Mansell (2014),

observation operators for FED were derived as a

function of graupel mass or graupel volume based on

explicit simulations of electrification processes (e.g.,

noninductive charging rates) within convective storms.

The assimilation of FED was found to effectively

modulate convection by better depicting the location of

reflectivity echoes and the spatial location probabilities

of convective updrafts. Additionally, the assimilation

of zero flash rates was found to partially address the

presence of spurious convection in similar way as zero

reflectivity data (Tong and Xue 2005). Allen et al.

(2016) extended the work of Mansell (2014) by apply-

ing the EnKF DA system to two contrasting real cases;

namely, a tornadic supercell, and a nonsevere multicel-

lular storm. Their study assimilated pseudo-GLM FED

observations derived from the ground-based LMA data

(Rison et al. 1999). Tests were conducted to evaluate the

performance of different FED observation operators

with the best results obtained when assimilating 1-min

FED rates using the observation operators based on

graupel mass or graupel volume (Allen et al. 2016).

Though the LDA studies cited above showed prom-

ises for improving the analysis and forecast of convec-

tive storms, there still are some limitations that need to

be addressed. First, the EnKF DA studies of Mansell

(2014) and Allen et al. (2016) assumed a relatively

simple framework (e.g., OSSE or horizontal homoge-

neity in the storm environment and no terrain or land

surface processes) and Fierro et al. (Fierro et al. 2012,

2014, 2015a, 2016) used simpler DA procedures such as

nudging or variational analysis of derived pseudo-

moisture data. Thus, LDA using a more sophisticated

DA procedure (such as EnKF) that is coupled with an

NWPmodel with full model physics is desired. Second,

past studies either assimilated simulated FED data

(Mansell 2014) or pseudo-GLM FED data derived

from the ground-based LMA data (Allen et al. 2016;

Fierro et al. 2016) or the Earth Networks Total

Lightning Network (Liu and Heckman 2010; Fierro

et al. 2016). To the best of our knowledge, there exist

currently very few studies in the literature that as-

similate the real GLM FED data (Bruning et al.

2019), given that the GOES-R satellite was launched

only recently.

The chief goal of this study is to enhance the DA ca-

pabilities for GLM lightning data by implementing them

within the operational Gridpoint Statistical Interpolation

(GSI; Wu et al. 2002; Kleist et al. 2009) framework using

EnKF, and evaluate their impacts on convection-

permitting/resolving resolution (Dx# 5 km) forecasts.

The remainder of this manuscript is organized as fol-

lows. In section 2, we introduce the EnKF algorithms

and the lightning observation operators. Section 3 pro-

vides a brief overview of theMCS case used in this study,

describes the preprocessing of the GLM-FED observa-

tions and the experimental design. In section 4, FED

observation operators based on the graupel mass and

graupel volume are first tuned then tested in DA ex-

periments, and their results are compared with those of

control run that does not assimilate any FED data. The

summary and conclusions are given in section 5, with

some additional discussions on future studies.

2. Assimilation method and observation operators

a. The EnKF algorithm

The GSI-based EnKF system is enhanced for it to be

able to assimilate FED data derived from the GOES-R

GLM observations. The algorithm used is the ensemble

square-root filter (EnSRF) of Whitaker and Hamill

(2002). A scalable implementation of EnSRF after

Anderson and Collins (2007) is used in GSI, in which

both state vectors and precalculated observation priors

are updated by the filter. This ensemble filter is equiva-

lent to the traditional EnSRF when the forward obser-

vation operator is linear. In EnSRF, the ensemble mean

and ensemble perturbations are updated separately.

Specifically, the ensemble mean forecast of the model

state and observation prior are first updated by Eqs. (1)

and (2) as below:

xa 5 xb 1K
x
[yo 2 yb] , (1)

ya 5 yb 1K
y
[yo 2 yb] . (2)

In the above, x and y are the state vector and ob-

servation vector, respectively. Superscripts a, b, and o

denotes analysis, background, and observation, re-

spectively, while overbar denotes ensemble mean. yb5
H(xb) is the observation prior, H is the observation

operator (which can be nonlinear), and Kx and Ky are

the Kalman gains used to update the means of the state

vector and observation prior, respectively, via the

background error covariances among the state (ob-

servation prior) and observed quantitates to be calcu-

lated from the ensemble. Subscript x and y denote the

state and observation prior, respectively.
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The ensemble perturbations, denoted by prime,

of state variables and observation priors are then

updated by Eqs. (3) and (4), respectively, for ensem-

ble member k:

xa
0

k 5 xb
0

k 2 ~K
x
yb

0
k , (3)

ya
0

k 5 yb
0

k 2 ~K
y
yb

0
k , (4)

The final analyses for the ensemble members are

xak 5 xa 1 xa
0
k . (5)

Here,

K
x
5 [r

xy
+(P̂bHT)](HP̂bHT 1R)21 , (6)

K
y
5 [r

yy
+(HP̂bHT)](HP̂bHT 1R)21 , (7)

P̂bHT 5
1

N2 1
�
N

k51

xb
0

k y
b0T
k , (8)

HP̂bHT 5
1

N2 1
�
N

k51

yb
0

k y
b0T
k . (9)

In the above equations, H is the tangent linear ob-

servation operator, P̂b is the ensemble covariance

estimated from an ensemble of background states xbk
with N being the ensemble size, and P̂bHT is the

background error covariance between the model state

x and observation prior y, whileHP̂bHT is that between

observation prior y itself. It is these ensemble-derived

statistics that allow for the updating of all model state

variables with the FED observations, including state

variables that do not appear in the observation oper-

ator of FED.

A distance-dependent localization function (Gaspari

and Cohn 1999) is used for the localization of the en-

semble covariance; rxy+ and ryy+ are the Schur product

of the correlation matrix rxy and ryy, respectively.

Subscripts xy and yy are introduced to illustrate the fact

that the correlation matrix rxy is calculated between

model and obervation space, while ryy is calculated

purely in the observation space; ~Kx and ~Ky are the

‘‘reduced’’ Kalman gain used to update the ensemble

perturbations of state and observation priors, respec-

tively. When serially assimilating independent obser-

vations, ~Kx and ~Ky are used so that the correct analysis

error covariance can be estimated without perturbing

the observations (Whitaker and Hamill 2002):

~K
x
5

 
11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

HP̂bHT 1R

s !
K

x
, (10)

~K
y
5

 
11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

HP̂bHT 1R

s !
K

y
. (11)

b. The FED observation operators

Two out of the three FED observation operators from

Allen et al. (2016) are evaluated in this study. These

operators relate lightning to either the simulated grau-

pel mass or graupel volume. In Allen et al. (2016), a first

guess is created by radar radial velocity DA, with ex-

plicit electrification and lightning being simulated dur-

ing the radial velocity DA tests. Then linear best-fit

observation operators are derived based on relation-

ships between model microphysical quantities (graupel

volume, graupel mass, and noninductive charging rates)

and model flash rates in the analysis.

The lightning observation operators based on graupel

mass (FEDM) and graupel volume (FEDV) from Allen

et al. (2016) are given by

FEDM5 2:0883 1028(GM). (12)

FEDV5 1.53 0.017(GV). (13)

Before directly applying the above observation oper-

ators to assimilate real GLM FED observations, two

possible issues need be considered. First, the observation

operators from Allen et al. (2016) were derived based on

idealized model simulation data, which can have signifi-

cant biases, given inevitable errors in the simulation of

both microphysical and electrification processes. Second,

recent preliminary ground-truth studies have revealed

notably lower flash rates from the GLM compared to

ground-based LMA for high-flash-rate storms (Carey

et al. 2019). Akin to its predecessor instrument, the

Lightning Imaging Sensor (LIS; Christian et al. 2000), the

detection efficiency of the GLM is likely affected by

the cloud optical depth and/or the time of day (Fierro et al.

2019). To consider the above possible issues, sensitivity

experiments on the observation operators are conducted

by adding a tuning factor (CM or Cy) to the right-hand side

of Eqs. (12) and (13), which are shown as below:

FEDM5C
M
3 2:0883 1028(GM), (14)

FEDV5C
y
3 1.53 0.017(GV). (15)

In this paper, wewill test values of CM andCy equaling

to 1, 1/2, 1/4, and 1/6. GM (in kg) is the graupel mass and

GV (in m3) the graupel volume. Graupel volume is the

sum of all grid cells characterized by a graupel mixing

ratio exceeding 0.5 gkg21 within an assumed 12-km pixel

from the GLM centroid. Similar to Mansell (2014) and

Allen et al. (2016), eachmicrophysical quantity is summed
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over a volume spanning the vertical extent of the domain

and covering a 123 12km2 area in horizontal dimensions

centered on the model grid columns before being inter-

polated to the observation pixel locations; this makes the

horizontal coverage of the graupel mass or graupel volume

operator calculations more or less matches the 83 8 km2–

12 3 12km2 pixel resolution of the GLM data.

3. The data assimilation experiments

a. Case overview

Scattered showers and thunderstorms developed and

tracked over portions of South Dakota, and southern

Minnesota on 13 July 2018. The tail-end of a cold front

was the dominant forcing mechanism causing precipi-

tation in these area (Fig. 1) with storms producing wind

gusts in excess of 23ms21 and localized flooding. At

2100 UTC 12 July, some scattered storms started to

develop along the front (Fig. 1a). Two hours later at

2300 UTC, storms became more organized and devel-

oped into anMCS (Fig. 1b, the DA experiments will start

at this time). The MCS spreads across southeast South

Dakota, northeast Nebraska, south of Iowa, and north-

west Missouri, and lasted more than 6h (Figs. 1c,d),

producing heavy rain and lightning.

b. GOES-R GLM FED data and their processing

The FED data used in this study are derived from the

raw, 20-s Level-2 GLM data, which provide three dif-

ferent lightning metrics at a pixel resolution of approx-

imately 8 km over CONUS (Goodman et al. 2013) (i.e.,

the flashes, groups, and events) (Fig. 2). The definition of

FIG. 1. Locations of the fronts (reproduced based on the surface analysis from the SPC), overlaid with the

composite reflectivity observations (dBZ) remapped from the WSR-88D radars (shaded contour) at 2100 and

2300 UTC 12 Jul 0300, and 0600 UTC 13 Jul 2018, respectively.
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and relationship between flashes, groups, and events are

governed by parent to child selection process based

on fixed spatial and temporal thresholds. An event is

the most elementary product and is the optical signal

(photons) emitted by a lightning discharge over an in-

dividual sensor pixel for a 2-ms integration period. A

group consists of an amalgamation of simultaneous

events detected within adjacent pixels, and a flash

combines groups that occur within about 300ms and

16 km of each other. The readers are invited to consult

Goodman et al. (2013) and Mach (2020) for more de-

tailed information about the GLM products.

To derive the FED, the GLM data are accumulated

within an assumed 10 3 10km2 grid box. In the GLM

data, locations of flash centroids, which are the mean

constituent event latitude weighted by their energies,

are also stored. If only the flash centroids are employed

to derive the flash density, the resulting FED will be

underestimated (Fig. 3a). Considering the parent to

child relationships information (i.e., number identifica-

tion or ‘‘id’’) that are stored for each flash, group, and

event, the FED algorithm herein tracked the event ids

for different groups and the group ids for different

flashes, accounting for the possibility of a single flash

passing through multiple pixels. The locations of the

events belonging to different flashes are used directly to

count the number of flashes passing through each pixel,

so that the location and rates of FED observation can

be more accurate (Fig. 3b). The GLM data processing

approach used in this study is consistent with the one

used by Bruning et al. (2019), and GLM FED product

is already part of the National Weather Service realtime

display system. This fact also supports our choice of

FED as the quantity to assimilate and facilitates

the potential operational implementation of the DA

capabilities.

c. Forecast model setup and initialization of ensemble

The forecast model used in this study is the three-

dimensional compressible non- hydrostaticWRFModel

with Advanced Research dynamic core (WRF-ARW)

(Skamarock et al. 2008). The data assimilation and

forecast experiments use a single domain with a

FIG. 2. GLM lightning detection product data parent-to-child

relationships.

FIG. 3. The 1-min FED (units: flash min21 pixel21, shading) calculated based on (a) locations of GLM flash

centroids, and (b) the locations of the events with the flash and group IDs being tracked, overlaid with the locations

of the events (black dots), in the full model grid of a 10-km horizontal grid spacing.
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horizontal grid spacing of 3 km and 3003 300 horizontal

grid points (Fig. 3a). The stretched vertical grid consists

of 53 levels with its top set at 100 hPa (;20.8 km). A

large time step of 15 s is used.

To perform EnKF assimilation of FED data, 2-h-long

spinup ensemble forecasts are first performed between

2100 and 2300 UTC to develop evolved ensemble per-

turbations on the 3-km model grid (Fig. 4). The initial

conditions of these forecasts are created by adding to the

3-h forecast of the 1800 UTC cycle operational North

American Mesoscale Forecast System (NAM) pertur-

bations derived from the operational Short-Range

Ensemble Forecast (SREF) 2100 UTC initial condi-

tions. SREF perturbations and their negative version

are used to form 40 perturbations and they are reduced

by 25% before being added to the NAM forecast at

2100 UTC. The scaling factor was found through ex-

periments. Furthermore, because the SREF perturba-

tions contain only wavelengths longer than 32 km (16km

is the grid spacing of SREF), additional smaller-scale

perturbations of horizontal velocity, potential temper-

ature and humidity are added to each initial condition,

and the perturbations have random Gaussian distribu-

tions, and have horizontal and vertical spatial correla-

tion scales of 20 and 3km, respectively. Adding spatially

smoothed small-scale random perturbations to the initial

conditions is a common practice for starting convective-

scale ensemble forecasts and data assimilation (e.g., Tong

and Xue 2008; Snook et al. 2011; Johnson et al. 2014).

Similar to the configurations of the 2018 Hazardous

Weather Testbed (HWT) Spring Experiment employed

at the Center for the Analysis and Prediction of Storms

(CAPS), the ensembles used in our EnKF DA exper-

iments consist of 40 WRF ARW members with dif-

ferent physics options. The 40 WRF runs use different

surface layer and planetary boundary layer (PBL) pa-

rameterization schemes. The surface layer schemes

used include the revisedMM5Monin–Obukhov scheme

(Jiménez and Dudhia 2012), Monin–Obukhov (Janjić

Eta) scheme (Janjić 1996, 2002), and that from the

Mellor–Yamada–Nakanishi–Niino (MYNN) PBL pack-

age (Nakanishi 2001). The PBL parameterization schemes

used include the Yonsei University (YSU; Hong et al.

2006), Mellor–Yamada–Janjić (MYJ) turbulent kinetic

energy (TKE), the MYNN 2.5-level TKE (Nakanishi and

Niino 2006), and the Asymmetrical Convective Model

version 2 (ACM2; Pleim 2007) schemes. The same par-

tially double-moment 6-class Thompson microphysical

schemes (Thompson et al. 2008), with different intercept

parameter (ranged from 50000 to 4000000m23) and ef-

fective density (ranged from421 to 673kgm23) for graupel

(for which only mixing ratio is predicted), are used in dif-

ferent runs. The use of different physics packages and

perturbing hydrometeor particle size parameters aim to

includemodel uncertainties, which help increase ensemble

spread that tends to be too small (Fujita et al. 2007; Xue

et al. 2010; Snook et al. 2012).

d. Design of data assimilation experiments

As is mentioned in 2b, the FED observation operators

based on graupel mass and graupel volume are first

tuned by multiplying the right-hand side of the obser-

vation operator by different tuning factors [1, 1/2, 1/4,

and 1/6 in Eqs. (14) and (15)] in a set of sensitivity ex-

periments that assimilate the real GLM FED obser-

vations using the cycled EnKF DA configurations to

be described below. These experiments are named

FEDM(V)_1Hx, FEDM(V)_1/2Hx, FEDM(V)_1/4Hx,

and FEDM(V)_1/6Hx, respectively, based on the op-

erator and multiplying factor value used (Table 1). The

optimal tuning factor is determined for each observa-

tion operator formulation (graupel-mass or graupel-

volume-based) in terms of the equitable threat score

(ETS; Mason 2003) of 0–6-h forecasts of FED calcu-

lated using the corresponding operator. The graupel-

mass-based and graupel-volume-based experiments,

using the optimal tuning factor, become the respective

‘‘control’’ experiments (FEDM and FEDV) that will

be evaluated in more details. Their analyses and

shorter-term forecasts are compared with those from

FIG. 4. Flow diagram of the (top) EnKF DA experiments vs (bottom) the control run. The

spinup ensemble forecasts from 2100 to 2300 UTC include 40 members. FED DA occurs

between 2300 and 0000 UTC with 5-min cycles, and deterministic forecast is launched from

the final ensemble mean analysis at 0000 UTC and run to 0600 UTC. The CNTL experiment

continues the ensemble forecasts through 0000 UTC without DA, when deterministic fore-

cast continues from the ensemble mean forecast at 0000 UTC.
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control experiment (CTRL) that does not assimilate

any data.

As mentioned earlier, 2-h spinup ensemble fore-

casts are first run from 2100 to 2300 UTC 12 July, when

the first EnKF analysis is performed in the DA ex-

periments (Fig. 4). The EnKF DA cycles every 5min

are run through 0000 UTC, when the ensemble mean

analysis is used to launch 6-h deterministic forecast

until 0600 UTC 13 July. This allows for the assessment

of the impact of FED DA on the forecast of several

key storm-scale features such as accumulated rainfall

and composite reflectivity. For CTRL, the ensemble

forecasts proceed through 0000 UTC without assimi-

lating any data, and deterministic forecast continues

at 0000 UTC from its ensemble mean forecast. The

forecast of CTRL provides a baseline for comparing

the forecasts of DA experiments.

With EnKF, the FED data cannot only adjust the

graupel field, which is directly related to FED through

the observation operator, but also other model state

variables through flow-dependent background error

covariances. To assess the impact of background error

cross correlations and the updating of indirectly re-

lated variables, three more experiments are conducted;

they are the same as FEDV except that different

model state variables are updated. The first of these

experiments updates only the graupel mixing ratio

(FEDV_OnlyQg). The second and third experiments

differ from FEDV in that the updating of water vapor

mixing ratio and potential temperature (FEDV_NoTQv),

and of vertical velocity (FEDV_NoW) are turned off,

respectively. FEDV is chosen around which these

sensitivity experiments are performed, because FEDV

is found to slightly outperform FEDM. Additional

details pertaining to the experiment design are listed in

Table 1.

The FED observations are assimilated every 5min

over a 1-h period using GSI EnKF. Zero FED ob-

servations are assimilated also to help suppress spu-

rious storms (Mansell et al. 2002), similar to the

effect of assimilating zero reflectivity data (Tong

and Xue 2005). A 0.95 adaptive posterior inflation

(Whitaker and Hamill 2012), or relaxation to prior

spread, is used to help maintain the ensemble spread

within the DA cycles. Akin to Allen et al. (2016),

the FED observations are assigned a height of 6.5 km.

Also similar to Allen et al. (2016), who used 15

and 36 km for horizontal and vertical localizations,

the horizontal and vertical localization radii used

are 15 km and 4 in 2log(P/Pref) space (;32 km on

average), respectively. Here P and Pref are the pressure

on model levels and reference pressure (1000 hPa),

respectively. With the large vertical localization radius,

the 2D GLM-FED observations effectively are allowed

to influence the entire domain depth. However, the ac-

tual range of influence is determined by the ensemble-

derived vertical spatial covariance, which should only be

significant within the troposphere.

4. Results

a. Sensitivity experiments on the FED observation
operators

The sensitivity experiments with different obser-

vation operator tuning factors (Table 1) are run

through the 5-min assimilation cycles over 1 h using

EnKF, followed by a 6-h forecast from the final en-

semble mean analysis, as described earlier. The same

observation operator used in the DA is also used to

calculate simulated FED from the forecasts and

verified against the observed FED. ETSs of the

FED forecasts after DA are examined for sensitivity

TABLE 1. Descriptions of the experiments.

Expt Tuning factor in Eqs. (14) and (15) Data being assimilated Updating of the state variables

CTRL N/A No data assimilated N/A

FEDM_1Hx 1 Assimilate lightning data using graupel-

mass based observation operator

Update all the model state variables

FEDM_1/2Hx 1/2

FEDM_1/4Hx 1/4

FEDM_1/6Hx 1/6

FEDM Optimal factor (1/2)

FEDV_1Hx 1 Assimilate lightning data using graupel-

volume based observation operator

Update all the model state variables

FEDV_1/2Hx 1/2

FEDV_1/4Hx 1/4

FEDV_1/6Hx 1/6

FEDV Optimal factor (1/2)

FEDV_OnlyQg Only updates graupel mixing ratio

FEDV_NoTQv Does not update temperature and water

vapor mixing ratio

FEDV_NoW Does not update vertical velocity
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experiments with different tuning factors in the ob-

servation operators (Fig. 5). For the threshold of

1 flash min21 pixel21, FEDM_1/2Hx performs slightly

better than FEDM_1Hx, and both are obviously

better than FEDM_1/4Hx and FEDM_1/6Hx in terms

of ETSs, especially for the 0.8–2.5-h forecasts (Fig. 5a).

FEDV_1/2Hx gives higher ETSs than FEDV_1Hx

for the first 1-h forecasts but similar (slightly bet-

ter) for the rest of the forecasts (Fig. 5c); FEDV_1/2Hx

has obvious higher ETSs than FEDV_1/4Hx and

FEDV_1/6Hx for most of the forecast time (Fig. 5c).

For the threshold of 5 flashes min21 pixel21, all the

ETSs drop quickly within the first 1.5-h forecasts

(Figs. 5b,d); FEDM_1/2Hx performs slightly better

than FEDM_1Hx for the 0.3–0.8-h forecasts but similar

for the rest of the forecasts, and both are obvious better

than FEDM_1/4Hx and FEDM_1/6Hx (Fig. 5b). The

ETSs from FEDV_1/2Hx are higher than those

of FEDV_1Hx for FED forecasts within the first 0.4 h and

2–3.2h but similar for the rest of the forecasts, and both

are obviously higher than FEDV_1/4Hx andFEDV_1/6Hx

(Fig. 5d). Overall FEDM(V)_1/2Hx performs the

best. Thus, 1/2 will be selected as the optimal tuning

factor. Hereafter, FEDM_1/2Hx and FEDV_1/2Hx

are renamed as FEDM and FEDV, respectively (See

Table 1).

b. Analyses and forecasts of FED in FEDM
and FEDV

In the next a few subsections, we examine in more

details the results of EnKF analyses and subsequent

forecasts from experiments that use the optimal tun-

ing parameter of 1/2 in the observation operators.

During the EnKF DA cycles, the observation priors

and posteriors [i.e., H(xb) and H(xa)] are calculated

and compared to the observations. The FED forecast

from CTRL and analyses from FEDM and FEDV

after 1-h of DA are shown in Fig. 6. Overall, FEDM

and FEDV perform similarly in capturing the intense

convection regions that are absent in CTRL, although

the FED rates produced by FEDM (Fig. 6c) are

stronger than those of FEDV (Fig. 6d) and are more

consistent with the observations for the analysis of

high FED values. This is presumably because FEDV is

mainly sensitive to the spatial distribution of graupel

while FEDM is also sensitive to the graupel amount.

It is also noted that there exist wide areas of low

magnitude FED in FEDM around the convective

FIG. 5. ETSs of FED forecasts after DA for sensitivity experiments that multiply (a),(b) the graupel-mass-based

(FEDM) and (c),(d) the graupel-volume-based (FEDV) observation operators by tuning factors of 1, 1/2, 1/4, and

1/6, for (a),(c) 1 flash min21 pixel21 and (b),(d) 5 flashes min21 pixel21 threshold, respectively.
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core regions (Fig. 6c), which are not found in FEDV

(Fig. 6d) or the observations (Fig. 6a). In the obser-

vation operator of FEDV, FED is no longer a func-

tion of graupel mixing ratio once the graupel mixing

ratio exceeds the 0.5 g kg21 threshold, and FEDV

does not see graupel mixing ratios less than the

threshold either. For this reason, few values of low

FED are found in the analysis of FEDV (Fig. 6d).

In contrast, because of the presence of the low

graupel mixing ratios outside the convective cores,

low values of FED are still seen in the analysis of

FEDM (Fig. 6c).

A more accurate analysis in terms of the observed

quantity, however, does not necessarily guarantee

forecast improvements. To examine the influence of

the lightning DA on forecasts, 1–4-h forecasts of

FED are compared against the observations (Fig. 7).

Compared to CTRL (Figs. 7b,f,j,n), both FEDM

(Figs. 7c,g,k,o) and FEDV (Figs. 7d,h,l,p) are able

to better capture the intensity and distribution of

lightning, although the overall FED rates are slightly

underestimated and suffer from noteworthy displace-

ment errors at larger values (i.e., .10min21 pixel21).

The intensity and spatial distribution of the FED

forecasts from FEDV are somewhat closer to the

observations than FEDM. The FED forecasts from

CTRL are notably inferior as evidenced by simulated

rates that are distinctly smaller than the observations,

FIG. 6. Horizontal cross sections of (a) 1-min FED observations (units: min21 pixel21), (b) FED forecast

from CTRL, (c) FED analyses from experiments FEDM, and (d) FEDV after a 1-h cycled DA period (valid at

0000 UTC 13 Jul).
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especially within the first 2 h. The lack of convective-

scale structures consistent with FED observations in

CNTL should be the main reason. Additional spinup is

needed when the forecast is launched from an ensem-

ble mean (which tends to smooth out smaller-scale

structures) can be another. The 3–4-h forecasts of

CNTL are better as convection in the southwestern

part of the MCS is built up, but the areal coverage of

the FED forecasts is much smaller than those in

FEDM/FEDV and observations. Meanwhile, the FED

FIG. 7. Horizontal cross sections of (a),(e),(i),(m) 1-min FED observations (units: dBZ), and FED forecasts from (b),(f),(j),(n) CTRL;

(c),(g),(k),(o) FEDM; and (d),(h),(l),(p) FEDV after (a)–(d) 1-, (e)–(h) 2-, (i)–(l) 3-, and (m)–(p) 4-h free forecasts following the 1-h

cycled DA period (valid from 0100 to 0400 UTC).
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forecasts on the northeastern part of the MCS is still

absent in CTRL.

c. Analyses of state variables indirectly related
to FED

In the observation operator, FED is directly related to

graupel so that FED EnKF DA can directly adjust

graupel mixing ratio through the observation operator

connection. The FED observations also adjust other

model state variables through the background error

cross correlations in EnKF. To examine the direct im-

pact of FED DA on the analyses of model state vari-

ables, vertical cross sections of the mixing ratios of rain,

snow and graupel (Figs. 8a–c) and the mixing ratios of

cloud water, cloud ice, and vertical velocity (Figs. 8d–f)

are plotted after the first analysis at 2300 UTC for

FEDM and FEDV, and compared to the fields from

CTRL, which are really the background fields of the first

analysis. The vertical cross sections are chosen to pass

through the maximum graupel mixing ratio value in the

analysis of FEDM. By virtue of the observation opera-

tors used, a large amount of graupel is added into

the model in both FEDM and FEDV (Figs. 8b,c).

Coincidentally, rainwater, snow, cloud water, cloud ice,

and vertical velocity (Figs. 8e,f) all increase substan-

tially, which can only be realized within EnKF through

(positive) background error correlations between FED

and these state variables.

To see that positive background error cross correla-

tions indeed exist between FED andmost state variables

where high FED value is found, we examine background

error correlations between FED and the state variables

[i.e., P̂bHT in Eq. (8)] from the background ensemble

forecasts at 2300 UTC, before the first EnKF analysis is

performed. The error correlations are calculated be-

tween the FED observation prior at a grid point near the

FIG. 8. Vertical cross sections of (a)–(c) the mixing ratios (g kg21) of rain (shading), snow (purple contours), and graupel (green

contours), and (d)–(f) vertical velocity (m s21, shading) and mixing ratios (g kg21) of cloud water (blue contours) and cloud ice (black

contours) after the first EnKF analysis for the three main experiments listed in Table 1 (CTRL, FEDM, and FEDV as indicated in the

panels). The cross section passes through the maximum value of graupel field in the FEDM analysis at (x 5 603 km, y 5 558 km).
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maximum graupel analysis increment and model state

variables at each grid point. Figure 9 shows the cross-

variable correlations in the same vertical cross section as

the fields in Fig. 8, before covariance localization is ap-

plied. Positive correlations can be seen between the

FED and almost all state variables shown in the vertical

column close to the FED point, and the correlations are

close to 0.95 at many locations, which will result in a

positive Kalman gain according to Eq. (6). With positive

Kalman gain (Kx) and positive innovation (yo 2 yb), the

analysis increment of the mean state (xa 2 xb) will also

be positive based on Eq. (1). As evidenced by Fig. 8, the

positive correlations shown in Fig. 9 are clearly associ-

ated with an updraft increase at the location after DA,

which supports higher cloud and hydrometeor values,

and positive temperature and moisture perturbations.

Because of such positive correlations, the mixing ratios

of rain, snow, cloud ice, water vapor as well as tempera-

ture, moisture and vertical velocity are generally adjusted

upward from the background values where graupel mix-

ing ratio is adjusted upward. In subsequentDAcycles, the

background error correlations should become more reli-

able when the model state estimation becomes more ac-

curate, and the assimilation of FED data should become

more effective (by producing more physical and model

consistent increments; not shown). The benefits of cross

correlations between radar reflectivity and model state

variables within EnKF were first discussed in Tong and

Xue (2005), and the cross correlations play similar

roles here.

d. Analyses and forecasts of reflectivity

The earlier results show how the FED DA generally

acts to increase the total mass of hydrometeors (and,

hence reflectivity) wherever the initial background

storms in the forecast domain are too weak. To eval-

uate how well the lightning DA captures the overall

structure and intensity of the storms, the reflectivity

FIG. 9. Background error correlations between a simulated FED (observation prior, units: min21 pixel21) located at the black dot

location andmodel state variables qg, qr, qs, qi, qy, pt, u, andw, calculated from ensemble forecasts valid at 2300UTC 12 Jul for experiment

FEDM in the same cross sections as those in Fig. 8, which passes through the maximum value of graupel field in the first FEDM analysis.
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fields after 1 h of DA and after 1–4-h forecasts are

computed and compared with observations from the

network of the U.S. Weather Surveillance Radar-1988

Doppler (WSR-88D), also called Next-Generation

Radar (NEXRAD; Doviak et al. 2000). Figure 10

shows composite reflectivity fields at the end of DA

window for the observations (Fig. 10a), CTRL (Fig. 10b),

ensemblemean analyses for FEDM(Fig. 10c) and FEDV

(Fig. 10d). Overall, all three experiments are able to

capture the west-southwest–east-northeast-oriented pre-

cipitation band (i.e., the MCS). The areal coverage of

moderate-to-large reflectivities ($40 dBZ) in FEDMand

FEDV are similar with both being notably larger than

CTRL and, in turn, more consistent with the observa-

tions. The reflectivity is generally too weak in CTRL,

lacking convective cores.

To examine the vertical distributions of key storm-

scale features, vertical cross sections of reflectivity fields

at the end of the DA window for all the experiments are

evaluated against the observations (Fig. 11), The cross

sections in Fig. 11 are made through the maximum ob-

served reflectivity. Overall, FEDV produced stronger

reflectivity cores than FEDM. The reflectivity in the

FEDDA experiments are notably higher than in CTRL,

and closer to the observed intensity. The intense re-

flectivity column associated with deep convection is well

FIG. 10. Composite reflectivity fields (dBZ) from (a) the observations, (b) CTRL, (c) FEDM, and (d) FEDV after

1-h FED DA (valid at 0000 UTC).
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captured in both DA experiments. In both FED DA ca-

ses, the vertical mass flux of water vapor is larger than

CTRLdue to generally larger vertical velocities (stronger

storms). Some displacement errors, however, must be

noted between the observed and analyzed reflectivity,

which, based on our examination, appears to be due to

the displacement (parallax) errors of the GLM lightning

observations. Unlike the ground-based lightning map-

ping networks, the GLM on board the satellite must deal

with parallax, which is the effect whereby the position or

direction of an object appears to differ when viewed from

different positions (Vicente et al. 2002). It is also noted

that the analyzed storm is much broader than that of the

observed one. Allen et al. (2016) also reported that the

FIG. 11. Vertical cross section of reflectivity (dBZ), temperature (magenta contour, with 108C interval), water

vapor mixing ratio (black contour, with 2 g kg21 interval), and wind vector fields (m s21) for (a) the observations,

(b) CTRL, (c) FEDM, and (d) FEDV after 1-h FED DA (valid at 0000 UTC), through the maximum reflectivity

value in the observations.
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areal extent of the analyzed storms was somewhat larger

than that of the observed storm. Same as Allen et al.

(2016), the spatial broadening of convection is believed to

be related to low spatial resolution of the GLM data.

The 1–4-h reflectivity forecasts show that both light-

ning DA experiments are able to better forecast the

intensity and distribution of the precipitation band of

the MCS while CTRL significantly underpredicts the

intensity of the convective cores within this MCS

(Fig. 12). Clearly the primary impact of the FEDDA is

on intense convection, where lightning occurs more

systematically. It is also noted that in FEDM and

FIG. 12. Composite reflectivity fields (dBZ) for: (a),(e),(i),(m) observations, (b),(f),(j),(n) forecasts from CTRL, (c),(g),(k),(o) FEDM,

and (d),(h),(l),(p) FEDV after (a)–(d) 1-, (e)–(h) 2-, (i)–(l) 3-, and (m)–(p) 4-h free forecasts following the 1-h cycled DA period (valid at

0100–0400 UTC).
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FEDV, the leading edge of the MCS in the final anal-

ysis tends to weaken in the forecasts. Although EnKF

tries to produce analyses of model state variables that

are consistent with themodel through ensemble-derived

background error covariance, the error covariance is not

always reliable (due to small ensemble size, model and

ensemble-mean state errors), and thus rapid adjust-

ments tend to occur immediately in the forecast, and

small-scale errors tend to grow very fast. Overall, posi-

tive impact of FED DA on the forecast is still evident.

e. Objective verification

To assess the performance of the experiments in a

quantitative manner, the gridpoint-based ETS for the

FED forecasts, and analyses during the DA cycles, are

computed for CTRL, FEDM, and FEDV, for the FED

thresholds of 1 and 5 flashes min21 pixel21, respectively.

The ETS of the FED analyses from both FEDM and

FEDV noticeably increased relative to the correspond-

ing background forecasts for both thresholds (Fig. 13).

For the 1 flash min21 pixel21 threshold, the two DA

experiments clearly outperform CTRL. FEDV slightly

outperforms FEDMwithin the first 20-min DAwindow,

but underperforms FEDM for the rest of the DA win-

dow. During 10–50min of forecast, however, FEDV

produces slightly larger ETSs than FEDM but becomes

similar to FEDM for the rest of the FED forecasts

(Fig. 13a). The ETSs for the 5 flashes min21 pixel21

threshold are almost 0 in CTRL because it fails to

produce intense lightning convection. At this higher

threshold, FEDV slightly outperforms FEDM in terms

of ETS in both FED analyses and forecasts (Fig. 13b).

Overall, the performances of the two forms of graupel-

based observation operators for FED can be consid-

ered as equivalent.

One salient limitation of the pointwise ETS is the

double penalty imposed on the scores when storm-scale

features exhibit small displacement errors/biases. An

alternative neighborhood-based forecast evaluation

metric alleviating this drawback–the fractions skill score

(FSS; Roberts and Lean 2008)–is also used to evaluate

the 1–4-h forecasts of hourly accumulated precipitation

against precipitation estimates from theNational Severe

Storms Laboratory Multi-Radar Multi-Sensor (MRMS)

product (Zhang et al. 2016) (Fig. 14). For stratiform

precipitation at the 5mmh21 threshold, FEDV per-

forms slightly better than FEDM and both are more

skillful than CTRL for up to 4 h of precipitation forecast

(Fig. 14a). For convective precipitation at the 20mmh21

threshold, FEDM and FEDV are more skillful than

CTRL until about 3 h, after which the skill decreases

sharply for all cases (Fig. 14b). The FSS exhibits a higher

degree of sensitivity to the neighborhood radius chosen

for convective precipitation (20mmh21, Fig. 14b) than

for stratiform precipitation (5mmh21, Fig. 14a), which

is not surprising given the small sizes of convective

precipitation regions and hence higher sensitivity to

displacement error.

f. Sensitivity tests on state variable updating in EnKF

Sensitivity tests are conducted to assess the impacts of

background error cross correlations and the updating of

the state variables that are indirectly related to the FED

observations on storm analysis and forecast. Based on

the ETS of FED analyses and forecasts shown in Fig. 13,

FEDV overall has higher scores than FEDM, especially

in the forecasts. For this reason, we perform our sensi-

tivity experiments based on FEDV experiment. When

only updating the graupel field that is directly related to

the FED observation in experiment FEDV_OnlyQg, the

ETSs for the 1–4-h free forecasts of FED are much lower

than those of the original FEDV experiment that update

all state variables (Fig. 15). For the 1 flash min21 pixel21

threshold, the difference lasts throughout the 4h of

forecast, although the difference is larger in the first 2.5 h.

For the highest threshold of 5 flashes min21 pixel21, the

difference is mostly in the first 1.5h. The most noticeable

differences occur in the first 20min of forecast when the

ETSs of FEDV_OnlyQg drops quickly toward zero

before recovering, for both thresholds (Fig. 15), while

those of FEDV drop much more slowly to levels around

FIG. 13. ETSs of the FED forecasts for CTRL (gray curve),

analyses (corresponding to higher scores) and forecasts (cor-

responding to lower scores) within the 1-h DA window, and 0–4-h

free forecasts for FEDM (blue curve) and FEDV (magenta curve),

for (a) 1 flashes min21 pixel21 and (b) 5 flashes min21 pixel21 FED

threshold.
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0.3. Faster drops in the scores are also seen within theDA

cycles. This clearly suggests that even though FEDV_

OnlyQg is able to analyze FED fields that are close to

observed FED due to direct link between graupel mixing

ratio and FED, other state variables are analyzed poorly,

and their errors cause the forecast to deteriorate quickly.

In FEDV, other state variables are consistently updated

within the DA process, resulting much slower error

growth in the forecast.

Experiment FEDV_NoTQv, which withholds the

updating of water vapor and potential temperature

fields, performs slightly better than FEDV_OnlyQg

but exhibits much lower scores than FEDV. This in-

dicates the critical importance of the temperature and

moisture fields since that are what support the moist

convection. Not allowing the filter to update the vertical

velocity in experiment FEDV_NoW does not have

much influence on the FED forecasts relative to FEDV,

suggesting that the vertical velocity may be able to re-

spond quickly within the model forecast to accurate

analysis of thermodynamic conditions including temper-

ature and moisture perturbations within the storms. In

summary, the adjustments to model state variables that

do not directly appear in the FED observation operator,

especially to the temperature and moisture fields, play an

important role sustaining the benefits of FED assimila-

tion, and in improving the overall analysis and forecast of

an MCS in this study in terms of simulated FED. Such

adjustments are made possible with the flow-dependent

error covariance calculated from the forecast ensemble.

We also compared the FSS scores of the sensitivity

experiments for 3-, 9-, and 15-km neighborhood radii

with those of CTRL and FEDM, the general behaviors

are very similar to those of ETS; they are therefore

not shown.

5. Summary and conclusions

In this study, theGSI-based EnKF system is enhanced

to include the ability to assimilate GOES-R GLM data

into a convection-allowing NWP model. Real GOES-R

FIG. 15. As inFig. 13, but for theoriginal FEDVexperiment (labeled

FEDV), sensitivity experiments FEDV_OnlyQg, FEDV_NoTQv, and

FEDV_NoW, for (a) the 1 flashes min21 pixel21 and (b) 5 flashes

min21 pixel21 FED thresholds.

FIG. 14. FSSs for the 1–4-h forecasts of hourly accumulated precipitation for CTRL (gray), FEDM (green), and

FEDV (red), relative to the MRMS hourly rainfall estimates for thresholds of (a) 5mmh21 and (b) 20mmh21

using 3-, 9-, and 15-km neighborhood radii. Legends for colors are shown in (a).
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GLM FED data are assimilated for an MCS case that

occurred over the central U.S. plains, and the impact of

assimilating such data is evaluated. Two versions of the

FED observation operator are implemented and tested.

They are the observation operators from Allen et al.

(2016) that are based on the graupel mass and graupel

volume, respectively. To account for possible biases in

the original observation operators, sensitivity experi-

ments are conducted by multiplying the right-hand sides

of two versions of the observation operators by different

tuning factors. The optimal tuning factors are obtained

in terms of ETS in 0–6-h forecasts of the FED field after

DA. The two primary sets of DA experiments using the

two versions of the operator and the corresponding

optimal tuning factors are labeled FEDM and FEDV,

respectively. Additional sensitivity experiments are

conducted, in which different model state variables are

updated by the FED observations. These experiments

are to examine the impact of updating state variables

that are not directly connected to FED via observation

operator, but through ensemble background error cor-

relation only. To the best of our knowledge, this study

represents that first time that real GOES GLM data are

directly assimilated (using EnKF method).

The raw, 20-s Level-2 GLM data, including the light-

ning flashes, groups and events data, are processed to

form FED data every minute. The 1-min FED obser-

vations are assimilated every 5min for a 1-h period using

EnKF. Experiments FEDM and FEDV are first evalu-

ated, by comparing with the results of a control run

(CTRL) not assimilating any data. The comparisons are

made based on analyses and forecasts of FED, com-

posite and 3D reflectivity fields, and vertical velocities.

Objective verifications are also made using gridpoint-

based ETS and neighborhood-based FSS for forecasts of

hourly FED and rainfall. The main findings are sum-

marized as follows:

d NeighborhoodETSs of 0–6-h FED forecasts are calculated

for experiments FEDM(V)_1Hx, FEDM(V)_1/2Hx,

FEDM(V)_1/4Hx, and FEDM(V)_1/6Hx that mul-

tiply the right-hand side of their corresponding ob-

servation operator by a different tuning factor

(1, 1/2, 1/4, and 1/6), respectively. FEDM(V)_1/2Hx

outperforms experiments with other tuning factors

in terms of the ETSs of FED forecasts. Thus, 1/2 is

determined to be the optimal tuning factor in both

FEDM and FEDV and used in the rest of experi-

ments and evaluations.
d In terms of FED, experiments FEDM and FEDV

perform similarly, and both outperform CTRL as

evidenced by higher ETS scores of FED analyses

and short-term forecasts (,3 h). FEDM and FEDV

better capture the higher lightning density rate areas

in both the analysis and forecast fields while CTRL

mostly misses them.
d By virtue of the graupel-based observation operators

used during the assimilation of GLM FED data, a

large amount of graupel is added into themodel by the

analysis at the time of first analysis (given that the

initial background values were too low). Positive

ensemble-derived background error cross correlations

between FED (i.e., graupel mixing ratio) at a main

updraft location and other hydrometeor species such

as rainwater, snow, cloud water, and cloud ice result in

their upward adjustment in the first DA cycle when

the background convectionwas tooweak.Additionally,

positive correlations between FED/graupel mass and

vertical motion lead to more intense convective up-

drafts at observed lightning locations and overall stron-

ger convective storms.
d The analyzed reflectivity at the end of the 1-h DA

window and forecast reflectivity at up to 4 h of forecast

time are compared with observed reflectivity. Both

FEDM and FEDV DA experiments and CTRL are

able to capture the overall west-southwest–east-

northeast-oriented MCS in the analyses. The areal

coverage ofmoderate-to-high reflectivity (i.e.,$40 dBZ)

produced by FEDM and FEDV are, however, notably

larger than in CTRL, and match observations better.

The analyzed vertical velocities in the FED DA ex-

periments (and, thus graupel mass fluxes) are overall

stronger than those in CTRL, leading to more lightning-

active convection. The reflectivity forecasts of FEDM

and FEDV also better capture the intensity and distri-

bution of the observed MCS relative to CTRL. Overall,

the most noticeable direct impact of the FED DA is on

lightning-producing convective cores.
d The 1–4-h forecast of hourly accumulated precipita-

tion from the three main experiments are verified

against precipitation estimates from the Multi-Radar

Multi-Sensor (MRMS) using the standard gridpoint-

based ETS formulation and the neighborhood-based

fractions skill scores for light and heavy rainfall

thresholds corresponding to stratiform and convec-

tion precipitation, respectively. Overall, FEDM and

FEDV perform similarly and are more skillful than

CTRL up to 4 h into the forecasts.
d Sensitivity experiments updating different model state

variables show that the adjustments to state variables

are that not directly connected to FED through

observation operator plays a very important role

producing consistent analysis among the model fields,

enabling more sustained impact of assimilating FED

data. The updating of temperature and moisture

fields are found to be especially important. If they
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are not updated by the filter, the forecast error

grows very fast.

In summary, the FED DA experiments using graupel

mass and graupel volume-based observation operators

perform similarly and notably better than CTRL with-

out DA, in terms of the accuracy of the analyses and

short-term forecasts of FED, composite/3D reflectivity

fields, and the expected locations of updraft cores. The

FEDDAusing the graupel-based observation operators

from Allen et al. (2016), with a proper tuning factor

multiplied, is shown to be quite effective in initializing

regions of intense convection for this case and, thus,

helps improve short-term (up to 4 h) forecast of hazards

associated with deep convection such as convective

rainfall and high FED rates. EnKF adjustments to

graupel and other model state variables (such as temper-

ature, moisture and vertical velocity) through ensemble

covariances generate forecast-model-consistent analyses

and forecasts with higher skill scores for this case.

Given the still infancy stage of lightning DA using

ensemble methods, in particular with space-borne

lightning data, future studies are clearly needed, with

emphasis on building statistics with additional cases

with particular attention given to data-sparse areas

such as oceanic and/or mountainous regions.

Given that the observation operators tested were

originally derived statistically from model simulations

with electrification rather than based on true observa-

tions or direct physics modeling, there still exist large

uncertainties with the operators, and further calibra-

tions are likely needed. In the case of large optical depth

above the lightning flash source level, there may be

significant extinction to the GLM observed flashes,

hence underestimating the FED. Building light extinc-

tion into the FED observation operator is a possible

solution to this problem, similar to accounting for signal

attenuation in the reflectivity observation operator of

short-wavelength radars (Xue et al. 2009). In addition,

even though FEDM and FEDV are found to perform

similarly in this study, further tests with more cases are

needed to help us make the choice for operational im-

plementation. In future studies, we also plan to refine

the operation operator.

It is hoped that through further studies, the current

observation operators for GLM FED can be improved

and better adapted for broader use in terms of the range

of convective regimes and geographical regions consid-

ered. The EnKFDA system can also be tuned further in

terms of covariance localization and inflation. Akin to

Fierro et al. (2016), available Doppler weather radar

data should also be assimilated in tandem with lightning

data to better gauge the added value of 2D lightning

data with respect to more exhaustive 3D datasets. Other

available observations, such as high-resolution surface

observations, should also be assimilated together, so

that the storm environment can also be improved.

Additionally, performance of assimilating lightning ob-

servations with more advanced DA scheme (such as the

hybrid ensemble variational DA scheme) is also worth

investigation in further research. In fact, we are de-

veloping hybrid DA capabilities for FED data within

the GSI framework, and results will be reported in

future papers.
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